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Meet the most famous ones

Enzymes
(e.x. lipases, proteases)

Storage
(e.x. ferritin, albumin)

Motor
(e.x. actin, myosin)

Structure
(e.x. collagen, keratins)
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Receptors
(e.x. GPCRs)

Hormones
(e.x. insulin, oxytocin)

(e.x. antibodies)

(e.x. channel proteins)
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=PFL  Super dynamic molecules

= https://youtu.be/MZ47-G4XKDw



https://youtu.be/MZ47-G4XKDw

=PL  Protein function is multi-faceted



=PL  Protein function is multi-faceted

Abundance
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=PL  Protein function is multi-faceted

Abundance

Localization
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Proteomes and Proteomics

“Proteome”: PROTEIins expressed by a genOME

“Proteomics”™ methods (-omics) dedicated to the
analysis of proteomes

Represents the effort to establish the identities, quantities, structures, and
biochemical and cellular functions of all proteins in an organism, organ, or
organelle, and how these properties vary in space, time, or physiological state.

MCP 1.10 pg 675 National Research Council Steering committee
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=PFL Main challenges of proteomics

Dynamic
range
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Increasing complexity

PTMs
Alternative start-
stop codons
Cleavages

~ 200,000 transcripts

Alternative promoters
Alternative splicing

mMRNA editing 7

~ 22,000 genes

7

~ 1,000,000 proteoforms

‘Proteoform’: all the different molecular
forms in which the protein product of a
single gene can be found

Nat Methods. 2013 Mar; 10(3): 186—-187.
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=PFL - Same genome- different proteome- different phenotype

Monarch butterfly
Danaus plexippus




=PFL  Dynamic range

= Factors of 10° to 10'° between low and high-abundance proteins

observed in biological samples (especially plasma)
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Coagulation factor XIII B chain
EGE racestar Vitamin K dependent protein C
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Cytokeratin 8
Neutrophil defensin 1

interleukins, cytokines

https://doi.org/10.1016/j.molonc.2008.12.001
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https://doi.org/10.1016/j.molonc.2008.12.001
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=
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Can you see the bees on the flowers while you are landing?

Maria Pavlou

1010 js pretty large dynamic range...!

@ Lii Yun Yang

...and there is no PCR for proteins!
Slide courtesy Bruno Domon, ETH Zurich
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Proteomic tools

Antibody-
based

Protein
microarrays

cytometry

Chromatography
-based

Gel-based @
1@ >

Mass

spectrometry

=
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=Pl What is a mass spectrometer?

A Mass Spectrometer (MS) measures the mass-to-charge ratio (m/z) of ions

Molecular Scale

16
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MS-based proteomics workflows

Top or bottom? Up or down?
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=FL " Top Down prons and cons

 |dentification of proteoforms

« De novo sequencing

* Rich information, less false
positives

Limited sensitivity and
throughput

Pure samples required
Insoluble proteins and big
proteins difficult to be
analysed

Highly sophisticated
instrumentation

=
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=PrL

MS-based proteomics workflows

Top or bottom? Up or down?
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Bottom Up prons and cons

« Simpler

» Higher-throughput

» Less sophisticated
instrumentation

» Applicable for “tough”
proteins

» Peptide separation is easier

PTM and isoform information is
often lost

Good “flying” peptides have to
be generated

Protein inference based on
peptides can be tricky

N
o
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Typical bottom-up workflow

Database search
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=PrL

Protein extraction

Physical disruption

« Sonication

» Bead-beating
* Freeze-thaw
» Grinding

Detergents and chaotropic substances

* Protein extraction
* Protein solubilisation

22
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Detergents and MS

Common detergents are incompatible with

1. Reverse phase liquid chromatography (compromise fractionation)
2. Mass spectrometry (ion suppression)

Detergent removal

v'Dialysis

v Filtration
v'Electrophoresis (eg. SDS)
v'Protein precipitation
v'Dilution (eg. Urea)
MS-compatible detergents

23
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Typical bottom-up workflow

Database search
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=P*L " Trypsin- the star of proteases

v'Highly specific and efficient; C-term of the basic residues Lysine and
Arginine (except when followed by Proline)

v'Lys and Arg are relatively abundant and usually well distributed
throughout a protein; many peptides of MS-reasonable size

v'Relatively cheap
v'Produces peptides with at least two charges (important for ionization)

25



=F7L  Protein digestion: why not trypsin?

Protease | Organism _____| Enzyme family SpeC|f|C|ty

Arg-C
Asp-N
Glu-C

Lys-C
Lys-N
Trypsin

Chymotrypsin

Clostridium histolyticum
Pseudomonas fragi

Staphylococcus aureus

Lysobacter enzymogenes

Lysobacter enzymogenes

Bos taurus

Bos taurus

Cysteine-protease
Metallo-protease
Serine-protease

Serine-protease

Metallo-protease

Serine-protease

Serine-protease

‘D
E’
K’
‘K
K’, R’

F!, W,, Y!

7.2-8
7-8
4-7.8

8.5-8.8

7.5-9

7-9

N
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=PFL  Digestion of proteins

1. Denaturation s

2.

3.

Reduction

Alkylation

o Denaturing agents

« Urea, guanidinium chloride, SDS, Rapigest...

<-Think about the way how to remove the
detergent afterwards!

<-Don’t forget to dilute denaturing agents before
adding the digestion enzyme (why?)
o Buffers
* Tris, HEPES, Ammonium bicarbonate

< Be aware of the optimal pH of your digestion
enzyme

27



=PFL  Peptide fractionation or enrichment

a) Off-gel electrophoresis : pl

b) Cation exchange: charge state in solution
c) Affinity chromatography : special groups
d) Reversed phase: hydrophobicity

v |solation of subset of peptides / reduction of sample
complexity

v Off-line or on-line

28
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Typical bottom-up workflow
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=P"L Reverse Phase (RP) chromatography

Hydrophobic peptides bind Hydrophilic pepti_des are eluted
stronger to stationary phase ~ With lower organic solvent

....................................................................

" Flow mobile phase Buffer A Buffer B
99.9% H20 99.9% ACN
0.1% FA 0.1% FA

Cc18

Hydrophobic stationary phase

Gradient: 3-90%
organic solvent

% B

Time (min)
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=PFL - Tandem MS (MS/MS)
Data Dependent Acquisition (DDA)

Most abundant
N ions are

+H
m/z
ionization ‘ separation
S —p — ¢
+ +

intensity

|

Ll

Retention time

MS1
Precursor
lon

selected (TopN)

+ +
®

MS2
Product
lon

fragmentation +

detection

intensity

intensity

m/z

m/z
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=PFL - Mass analyser @ 4min
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=PrL  Few seconds later...
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=P*L " Thermo video MS/MS

https://youtu.be/zJagpUbnv-Y
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Recorded information

= Retention time

= Peptide ion m/z
= Peptide spectrum
= |ntensity of ions

35
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Natural isotopic
distribution: relative
abundance of isotopes

= Most elements occur in nature as a
mixture of isotopes

= |sotopes are atom species of the
same chemical element that have
different masses

= They have the same number of
protons and electrons, but a different
number of neutrons (1Da)

= The main elements occurring in
proteins are CHNOPS

element (symbol) | isotope abundance %
hydrogen (H) g 99.988 %
°H 0.012%

carbon (C) 12 98.93 %
13¢ 1.07%

nitrogen (N) | N 99.636 %
15N 0.364%

oxygen (0) | 160 99.757 %
170 0.038%

180 0.205%

phosphor (P) 3lp 100 %
sulfur (S) | 32S 94.99%
333 0.75%

343 4.25%

269 0.01%
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=PrL

Mass can be many things

= Nominal: sum of integer atomic weights

= Average: the centroid of the complete isotopic envelope

= Monoisotopic: the mass of the first peak of the isotope distribution (most abundant

elements)

GluFib #1-47 RT: 0.00-0.74 AV: 47 NL: 4.41E2
T: [TMS + p NSIE Full ms [100.00-2000.00]

100

85 1’570.684 Da

GluFib: EGVNDNEEGFFSAR
Nominal mass 1569 Da 65

Chemical Formula: 55
50
* CesHosN1906

1566.52 1568.00 1569.36
N AN A~

1570660

90 Monoisotopic mass |

Average mass:
1’571.699 Da

15 64

Signals related to
lower abundance
isotopes

1572.64

/ 1574.68
N

1575:28__ 1576.40
J ./ s __1577.64 157840 1579.88

0 A
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

1566 1567 1568 1569 1570

1571

1572 1573 1574 1575 1576 1577 1578 1579
m/z

38



=PFL  The distances between isotopic
peaks reveal charge state

* M =1000 Da (not charged)
 [M+1H]™* — z=1
*m/z =1001 Da (Monoiso.)

|sotopic distribution

A
4 A\
1001
1002

1003

m/z

1 Da



=PFL  The distances between isotopic
peaks reveal charge state

* M =1000 Da (not charged)
 [M+1H]™* — z=1
*m/z =1001 Da (Monoiso.)

|sotopic distribution

A
s N\
1001 501
1002 501.5
1003 502
m/z m/z
1 Da l0.5Dz;1

334.33

334.66

335

m/z

0.33Da
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=PFL Low vs high resolution
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=PFL The importance of resolution and isotopic
envelope

Peptide
spectrum
matching

Monoisotopic
mass
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=PrL

Recorded information

= Retention time

= Peptide ion m/z

= Peptide spectrum
= |ntensity of ions

44



=PrL - MS2 spectrumin 2D

Intensity

m/z



=PFL - Database-based peptide sequence identification

In silico In silico

Uniprot

Peptide
Peptide A S fragment A
Species HIESSES
proteome Peptide
Peptide B Emmmes fragment B
masses

digestion fragmentation

o
(=2]
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=PrL

Database search

. Observed Mass
1. MS1 filter 1000 + 0.010 Da
2. MS2 scoring

3. Probabilistic analysis

Peptide A Mass
999.980

Peptide B Mass
999.993

Peptide C Mass
1000.005

Peptide D Mass
1000.010

Peptide E Mass
1000.025

Corresponding MS? data

Intensity

m/z

F =Y
~
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=PrL

Database search

. Observed Mass
1. MS1 filter 1000 + 0.010 Da

2. MS2 scoring
3. Probabilistic analysis

ide A Mass
999,

i

Peptide B Mass
999.993

Peptide C Mass
1000.005

Peptide D Mass
1000.010

Peptide E Mass
1000.

Corresponding MS? data

Intensity

m/z

o
o
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=PrL

1.
2. MS2 scoring
3. Probabilistic analysis

Database search

MS1 filter

ide A Mass
999,

Observed Mass
1000 + 0.010 Da

Corresponding MS? data

Intensity

Peptide B Mass
999.993

Peptide B Mass
999.993

m/z

Peptide C Mass
1000.005

Peptide C Mass
1000.005

Peptide D Mass
1000.010

Peptide D Mass
1000.010

Peptide E Mass
1000.

iy

Observed Mass
1000 £ 0.010 Da

Observed Spectra

Score

80

S
©
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=PrL

1.

MS1 filter

2. MS2 scoring
3. Probabilistic analysis

ide A Mass
999,

Peptide B Mass

999.993

Peptide C Mass
1000.005

Peptide D Mass
1000.010

Peptide E Mass

1000.

iy

Database search

Observed Mass

1000 +£0.010 Da

Corresponding MS? data

Intensity

m/z

Peptide Score
999.993
9

Peptide C Mass

1000005 | | | | 80
Pepti

1000.010 ‘ 1

—eee,
Observed Spectra

Observed Mass
1000 £ 0.010 Da

(52
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=PrL

Database search

1. MSH1 filter
2. MS2 scoring
3. Probabilistic analysis

ide A Mass
999,

Peptide B Mass
999.993

Peptide C Mass
1000.005

Peptide D Mass
1000.010

Peptide E Mass
1000.

Peptide Evidence:

Theoretical
spectra

Peptide C Mass
1000.005

Observed
spectra

Observed Mass
1000 + 0.010 Da

Score

80

[3,]
[y
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=F7L  Decoy/target strategy to determine FDR

>
o
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@
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AEPTIR ITPEAR

target decoy
Commonly used is 1% FDR:
1 Decoy hit is accepted among
Concatenated search 99 real hits

5 — 000000000000
-O _— Search engine ‘..‘.“.“.‘ FDR:M
A — 00000000 00060 # target
° = 000000000000

00000000 ¢600

False hits  Decoy hits



=PFL  Protein inference

Peptide Protein Protein Group
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From spectra to protein identifications

m/z

m/z

Theoretical spectrum

Experimental spectrum

Tandem
mass spectra

54
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Databases and search
constrains

= Publicly available (Uniprot) or custom made
= Not too large, not too small
= Include a common set of contaminants (keratins, BSA...)

55



=PrL

Commonly used search
engines

= Mascot

= Sequest

= XITandem
= Andromeda
= Comet

= All search engines use different criteria, producing different scores

= Using multiple search engines simultaneously yields better results

56



=PFL  What about PTMs?



=PrL

Butwhatis a PTM Maria???

\\o R
((\\ eVe
RN ’sy,
RS che,, %

e %

K v %,
g D _ Z
$ 9 Phosphorylation o 2

Deamidation Methylation %

\ / Acetylation

" Oxidation

)\ Ubiquitylation

Isoprenylation 1 \Sumoylation
Glycosylation

ADP-Ribosylation
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=PFL  What about PTMs?

Y PEPIIDE

Introducing a mass shift
All protein molecules? -> fixed (in-silico spectra taking into account the mass difference)
Some protein molecules? -> variable (two forms of in-silico spectra: with and without)

PE PEPT

@ ; D&PEP PTID
PEPTIDE K *

| |+ |4 Fragments supporting
m/z modification

(31
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=PrL

How many peptides canyou “see”?

human mitogen-activated protein kinase-8 (MAPKS)

a MS-compatible peptides

SLEE

MSRSK.

INVWYDPSEA EAPPP
SMSTDPTLAS DTDSSLEAAA

b Observed peptides

SLEE

LOPTVR
INVWYDPSEA EAPPPKIPDK
SMSTDPTLAS DTDSSLEAAA

C Proteotypic peptides
MSRSKRDNNF YSVEIGDSTF

NH SLEE
SDCTLK TAGTSF

LGTPCPEFMK KLQPTVRTYV
INVWYDPSEA EAPPPKIPDK
SMSTDPTLAS DTDSSLEAAA

SVDEALQHPY

TVLKRYQNLK PIGSGAQGIV CAAYDAILER NVAIK
FQDVYIVMEL MDANLCQVIQ MELDHER

VIRGQPSPLG AAVINGSQHP SSSSSVNDVS

NVAI KKl

GPLGCCR

YRELVLMKCV

LK ASQARDLLSK I SVDEALQHPY
VIRGQPSPLG AAVINGSQHP SSSSSVNDVS

TVLKRYQNLK PIGSGAQGIV CAAYDAILER
FQDVYIVMEL MDANLCQVIQ MELDHER
IIIIIIIIi iiIIIIIII
GPLGCCR

Proteotypic: experimentally observable peptides that can
be used to uniquely identify a protein

TVLKRYQNLK PIGSGAQGIV CAAYDATLER NVATKKLSRP FQNQTHAKRA YRELVLMKCV
FQDVYIVMEL MDANLCQVIQ MELDHERMSY LLYQMLCGIK HLHSAGITHR DLKPSNIVVK
MMTPYVVTRY YRADEVENGN GUKENVDLWS VGCIMGEMVC HKILFPGRDY IDQWNKVIEQ
ENRPKYAGYS FEKLFPDVLF PADSEHNKLK ASQARDLLSK MLVIDASKRI SVDEALQHPY
QLDEREHTIE EWKELIYKEV MDLEERTKNG VIRGQPSPLG AAVINGSQHP SSSSSVNDVS
GPLGCCR

[=2]
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=PrL

Flyable and proteotypic peptides

= Flyable: all peptides experimentally observed

= Proteotypic: experimentally observable peptides that can be used to
uniquely identify a protein

At least one proteotypic peptide is required for protein identification

All

possible

61



=PFL  Q: I submited a gel band containing my favorite
protein but you could not identify it. | know it is there
because | also did a western blot.
Why???



=PrL  Quantitative proteomics

>

Number of proteins
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=PrL  Absolute vs Relative

Absolute

Concentration,
mass or copy
numbers

Allows
comparison
between samples
and proteins

\ J

4 )\

Applicable to a
predefined set of
proteins

Relative

Ratio of
intensities

Allows
comparison of
one protein
across samples

\

J

Vs

Applicable to all

. J

Pure analyte
needed

— quantified
proteins

~N

D
&
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=F7L Quantitative proteomics strategies




=PFL  Experimental design of different startegies

Metabolic
labelling

7B

{ ]

cells or tissue ‘ |:H:|
@

. . N7 |
fractionationor ||
purification

proteins

peptides @

data analysis J I I I

Chemical
labelling

Label-free

=23
[=2]
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=PFL  Comparison of different strategies

m Multlplexmg Strong points Weak points

Metabolic 1-2 logs High accuracy with global Requires actively growing cells
labelling (early mixing of (5 doublings)
samples)
Chemical Up to 18 2 logs Highest multiplexing Expensive; ratio compression
(TMT) capability and low % of

missing values

Label-free 1 2-3 logs No labelling requirements Long processing, variabilty,
missing values due to inherent
stochasticity

[=2]
~
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Downstream analysis

=PrL
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Data annotations

Interpretation
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=PrL 0 i 69
-Dased proteomic studies

3

>

Article 2 June 2020 8 OPEN ACCESS @ TRANSPARENT PROCESS n(_“

o

Proteome profiling in cerebrospinal fluid reveals <§’3

novel biomarkers of Alzheimer's disease

Jakob M Bader ®, Philipp E Geyer ®, Johannes B Muller ®, Maximilian T Strauss ®, Manja Koch ®,
Frank Leypoldt, Peter Koertvelyessy, Daniel Bittner, Carola G Schipke, Enise | Incesoy, Oliver Peters,

Abundance
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